
3. Developing a Verifiable System

From “Verification, Validation, and Evaluation of Expert Systems, Volume I”

This chapter delineates how VV&E should be incorporated into the expert system lifecycle.  Although
some ideas may be used for revising and/or reengineering existing systems, this chapter is aimed mainly
at designing new systems and ensuring that enough VV&E operations are done during the lifecycle so
that these systems are verifiable.  Included in this process are decisions that should be made during
system specification and verification/validation during stepwise  development of an expert system.

Introduction

The proposed lifecycle for the development of expert systems is a compilation of concepts taken from
many sources including lifecycle, cleanroom, ect.  The compiled system was organized and enhanced
based on the experience of its developers to generate a basis for the development of “verifiable”
systems.  Even though the system allows for some flexibility in the degree of application of each of the
system’s components, the general outline has to be followed rigorously in order to achieve the
objective outlined above.

The Concept:  Figure 3.1. outlines the general concept for the development of a verifiable system.  It
includes the following stages:

Specification:  This step is indispensable in the VV&E process.

Stepwise Development Process:  This is one of the methods for the development process; other
software development methods can be used as long as they include enough structure and verification
steps.

Design (1):  Start by designing the main parts of the expert system.

Verify (1):  Verify that the design complies with the specification.

Implement (1):  Implement (code) the first increment.

Verify (1):  Verify that the implemented code complies with the design.

Design - Verify - Implement - Verify (2 to n):  Loop through the entire process for the 2nd, 
3rd, ... nth level until the entire system is complete.
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Figure 3.1:  Developing a Verifiable System
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Specification

The goal of this stage is to develop the system’s specification.

input: software specific customer requirements.
output: software functional and performance requirements.

The Importance of Specifications

Specifications are important for VV&E.  As noted in the introduction, verification determines if a
system meets its specifications; this is meaningless if there are no specifications.  Validation determines
if a system does what is needed; this is only possible if it has been decided what a system is supposed to
do.  The results of these decisions are specifications.

At the specification stage the emphasis is on producing a clear identification of:

• What is to be produced?
• When to produce it?
• What are the resources required?

The issue is to find a trade-off between the requirements specification (client) and the resources (time
and money).  The use of formal approaches (formal notation i.e., the Structured Analysis [SA; De
Marco 1978], the Software Requirements Engineering Methodology [SREM; Alford 1978], the
Structured Analysis and Design Technique [SADT; a trademark of SofTech],) proved to be very useful
in this process.  This is especially important to the V&V task because of the clarification provided by
the use of these methods.

Functional Specification (FS):  Specification of functions to be performed by the system and the
constraints within which it must work.

Acceptance Test Specification:  Test definition:
• Who will perform the test(s)?
• When (at what point)?
• How do we insure that the system behaves according to the FS ?
• Include V&V Techniques to be used and when (at which time).

In addition to the above mentioned items, the following items should also be addressed:

• A clear definition of the population of problems the expert system is supposed to solve.
• A provision of  test and development samples.
• The required level of performance.
• A clear definition of what constitutes a correct problem solution verification:

• Is it possible to collect inputs that could possibly solve the problem?

• Is it possible to compute the proposed output from the input validation?
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• Can the experts certify that the specifications, if properly implemented, would solve the evaluation
problem?
• Can experts judge that the system is worth the probable cost?

• Can experts judge that the system would be useful in practice?

• Is it possible to build a system that could be integrated with other components as necessary?

The General Form of Specifications

For the formal proof techniques presented in the following chapters, it is useful to have a general
representation of a specification.  Most specifications are based on the following form:

For some subset S of the input space of an expert system, and
for all X in S,
the output of the system satisfies some proposition P.

Defining Specifications

It is particularly important to define specifications for the critical cases the expert system may
encounter.  A critical case for an expert system is a set or range of input data on which failure of the
expert system to perform correctly causes an unacceptable, perhaps catastrophic, failure of the system
of which the expert system is a part.

There are several steps in defining and verifying specifications for an expert system:

• Gather informal requirements from experts, with particular attention to defining the critical cases.
• Obtain expert certification of the specifications.
• Validate informal descriptions of the specifications with experts.
• Validate the translation of informal specifications into the formal notation used in the knowledge

base.
• Validate the formal statement of the requirements using symbolic evaluation.

Each step is detailed in a section below, with particular attention to critical cases.

Gather Informal Descriptions of Specifications

The first step in verifying specifications is to gather a complete set of requirements. Only the domain
expert(s) can provide this list.  Ideally, during the original knowledge acquisition phase for the expert
system, the knowledge engineer gathered, documented, and validated the critical cases.  If the
informally stated requirements are not available, however, gathering them is the first necessary step in
verifying the correctness of an expert system.

Typically, to gather the critical cases, the knowledge engineer should ask the domain expert(s) to list
critical cases, and to keep a careful record of them.  As with most knowledge acquisition tasks, it is
important to ask for the following information:



5

• General principles, e.g. "What are the critical performance requirements for this expert system?"
• Specific projects, and the critical performance requirements found in those projects.  To get this

information, the knowledge engineer should ask the expert(s) to tell him about their projects and
experiences that are within the scope of the knowledge base.  The purpose of this is that by
reviewing the specific projects the expert’s memory will be spur. This process  will help the
engineer to decide what the critical cases really are.

In gathering a set of critical cases, it is important to let the domain experts describe critical cases in
their own words and notation, not in the notation of the expert system.  This is because the expert
system may have missed a critical variable that may be needed to recognize a critical case.  If the
knowledge engineer asks the expert to verify knowledge base gobbledygook, the expert may become
too distracted to think of a critical case not described with the incomplete set of variables used in the
incomplete knowledge base.

Obtain Expert Certification of the Specifications

It is important that the knowledge engineer impel the expert(s) to certify the specifications,  especially
those concerning the critical cases.  This is a vital step in the process because the expert system will be
built to meet and tested against the specifications.  If the specifications are in error, the expert system
will almost surely fail to perform properly.

In order to obtain meaningful certification of the specifications, the knowledge engineer must make
sure that the expert focuses on a careful review of the specifications.  Among the ways to obtain this
focus are:

• Have a group of experts reach consensus on the specifications, with the knowledge engineer
functioning as a moderator.  In this role, the engineer will:
• Be familiar with the ongoing discussion, and in addition, will be in a position to solicit

important issues that must be resolved.

• Ensure that the experts address those issues and reach an agreement.

• Have the expert(s) sign off on the specifications.

Validating Informal Descriptions of Specifications

For systems where correct performance is critical, the next step in validating specifications of the
expert system is to validate the informal descriptions of critical cases.  The basic method for validation
is that of cultural consensus, described in the chapter, "Validating Expert Knowledge.”  In this method,
experts, ideally those who have not provided the specifications, are used to validate the correctness of
those specifications.

There are two questions that should be asked concerning the informal list of critical cases to validate: is
the set of critical cases complete, and are the critical cases correct?  To validate completeness, the
knowledge engineer should conduct interviews with experts who have not contributed to the critical
case list.  This interview is similar to the one used to gather the list of critical cases, with one additional
step:  at the end of the interview, ask the expert to certify not just the critical cases the expert
proposed, but the entire list of critical cases gathered so far, including those that were added during the
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interview.  After additional experts no longer provide new critical cases, the entire list gathered has
been validated to a confidence level depending on the number of experts who certify the list.  Chapter
9, "Validating Underlying Knowledge", discusses these confidence levels in more detail.

Validating the Translation of Informal Descriptions

To validate the critical cases, the informal descriptions must be translated into formal statements in the
language of the knowledge base.  The goal of this translation is to produce statements of the form:

if H1 and H2 ...  and Hn then C1 and C2...and Cn.

The H’s should be stated in terms of input variables of the expert system, and the C’s should be
possible conclusions of the expert system.

The translation into a knowledge base language is a process that can introduce errors.  For example,
for Knowledge Base 1 a critical case in the informal language of an expert might be, "If the client
doesn't have a lot of money, he/she should first build a savings account.”  The closest that one can
come to expressing this in the language of Knowledge Base 1 is:

If "Discretionary income exists" = no
then investment = "bank account".

A financial planner would probably consider "Discretionary income exists" an inadequate translation of
"the client doesn't have a lot of money"; Knowledge Base 1 does not even ask about existing savings or
most other assets.

As this example illustrates, the translation of expert knowledge into the formal knowledge language of
an expert system is one of the tasks where errors can creep into the expert system.  To have a truly
validated expert system, the translation has to be validated.  Although this is rarely done, items can be
created for validation as follows:

• Is <expert's statement of a critical case>
• equivalent to <the same critical case in the knowledge language>

These items form the basis for a cultural consensus test for a set of knowledge engineers (see chapter 9
"Validating Underlying Knowledge").  When asking knowledge engineers to validate the translation of
critical cases, it is important to:

• Use knowledge engineers who have not built the knowledge base.
• Give the validating knowledge engineers the opportunity to familiarize themselves with the

knowledge language before examining the individual items.

In translating the informal requirements into formal knowledge base statements, there are some typical
kinds of errors, as discussed below:
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• False negatives in the input variables:  One problem in knowledge translation results from the fact
that a symptom is often used in a knowledge base to stand for an underlying condition; in the above
example, for example, "no discretionary income" stands for "has no money.”  However, few
observations are 100 percent reliable.  If a single symptom is used to test for a condition in a
knowledge base, a false negative of that symptom will produce an error in what the expert system
does.

The solution to the false negative problem is to separate symptoms and underlying conditions in the
knowledge base.  If C is a condition, the knowledge base should contain a rule of the form:

if S1 or S2 or ... Sn then C (Rule C).

Where S1 through Sn are a set of symptoms such that the probability of false negatives in all the S’s Is
less than some agreed-on threshold.  Outside of Rule C, and similar condition-inferring rules, the S’s
should not appear when a condition (i.e., C) is intended.  Therefore, every occurrence of an S outside
of a condition-inferring rule should be validated by expert(s).

In the case where a single symptom has such low false negatives that it identifies C by itself below the
acceptable error threshold, it is unnecessary to separate the symptom and condition in the knowledge
base:

• Missing input variables: An expert learns to observe many symptoms of possible problems.  An
expert system may use only a small number of variables.  Whether the small number of variables is
adequate is a matter that experts must validate.  It is important to ask experts what data they gather
in looking at problems covered by the knowledge base.  If the expert looks at more than the expert
system, for example variable X, then:

Can the expert get along without <variable X>

is a knowledge item that should be validated (see chapter 9).

Validation of Formalized Requirements

At this point, the critical cases have been transformed into a set of statements of the form:

if H1 and H2 and ... and Hn then C1 and ... Cm(name: f1).

Formal verification methods for specifications in this form are discussed in the chapters on knowledge
modeling and verification techniques for small systems.

Figure 3.2 outlines the steps to be considered at the specification stage and figure 3.2.1 shows their
implementation to knowledge base 1.

Other Issues to be addressed at this stage:
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• Project Plan:  Breakdown of the work; manpower figures, milestones, ect.
• Quality Management Plan:  Quality Control.

Single Source Document for all
Structure Design & Validation
of Requirements Implementation

•Problem Definition
•Population of Problems the System is
Supposed to Solve

• Definition of “Correct” Problem Solution
• Required Level of Performance
• Use of “Formal” Specification Methods (box

structure methodolgy)
• Knowledge Illustration
• User Involvement

SPECIFICATION

• Correctness • Completeness • Stability

Specs
Complete

Exploratory
Research

(i.e., prototype)

STEP-WISE REFINEMENT DEVELOPMENT

Figure 3.2:  Specification
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Problem Definition:
• The lack of readily available investment advice.
• Develop a system that will advise the user on investment strategies.
Population of Problems the System is supposed to solve:
• Investment advice to people with less than $ 1 Million to invest.
Definition of Correct Problem Solution:
• An investment strategy is always suggested.
• Proposed solution should be affordable
• The investor is comfortable with the advise.
Required level of performance:
• As good as 70% of the expert(s)  [Define:  good 70% of the time or 70% as good all the time].
• The system should always recommend an affordable investment even if it has to be a conservative

one.

Note:  Knowledge Acquisition  & User Involvement:

Figure 3.2.1:  KB1 Specification

Step-Wise Refinement Development

At this stage, a mapping of the system functions (from FS) into software components will occur and
the overall System Structure (Architecture) must be defined.  The use of the following Box Structure
Methodology will help in this process.

Software Structure

The general software architecture should consist of:

• Software Components (for each software component, determine its purpose, functionality,
interface, and data requirements).

• Structure & Flow.

Box Structure Methodology
• Black Box:  External view of the system.  This provides a system description of the user visible

system inputs and responses.  No details on the internal structure and operations are provided.
• State Machine:  Intermediate system view.  This decomposes the internal state structure from the

BB description of the system.
• Clear Box:  Internal view of the system operations on inputs and internal state data.

If the box structure methodology, is to be used, the first level/increment should consist of the overall
design taken as deep as possible (using black boxes for functions and sub-systems).  At every
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subsequent increment the design should be taken deeper, two to three level down, until all the boxes
are replaced by their respective functions/subsystems.

Design Refinement

The Top Level Design:

Given the specifications for the system as a whole, a top level software module is designed with the
following properties:

• The design for the top level software is written in a language, which may be but is usually not a
compilable programming language.  Any language which has a precisely enough defined syntax and
semantics to unambiguously define what the design does when executed, and to carry out required
correctness proofs of the software can be used.  Languages tha fit these requirements are called
design languages.  The process of rendering axiomized software into a design language is called
designing the software.

• The software design can be translated from its existing language into a compilable programming
language.  Techniques for doing this translation for standard knowledge models will be presented
later.  The software design can be proved correct.  In particular, the software can be proved to be
complete, consistent and to satisfy its specifications, under the assumption that any other functions
or other software modules used within the current object of proof satisfy some written, precise,
mathematical specifications.

Refining the Design:

Once the disign process has been started, a modification of the familiar successive refinement lifecycle
adds detail to the design.  Detail is added in two ways:

• Software modules which have been axiomized but not designed can be designed.

• Software that has been designed can be translated into a language that is closer to, or is, a
compilable programming language.

Verifying the Design:

A design is verified when it has been proved that the designed module is complete, consistent and
satisfied its specifications.

• A module is complete iff for all points in its input space, some values of the outputs and behaviors
required to instantiate the specifications are computed.

• A module is consistent iff it is possible, both mathematically and under the constraints imposed by
knowledge in the area of application, for all the output values and behaviors to be true at the same
time.
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• A module satisfies its specifications iff its specifications are true when instantiated with any input
values and any outputs or behaviors produced from those inputs.

Completing the Design:

A design is complete when all software modules appearing in the design have been axiomized, designed
and verified.

From Specifications:
1.  An Investment strategy is always suggested:
List of possible investments strategy for KB1:
• Stocks.
• Saving Accounts.
Do Nothing (Although this is a good choice for many instances, it is not considered for the example).
Note:  The list of output might be incomplete at this stage (i.e., may discover other possible strategies
down the line).
Define the specifications in terms of these newly defined list of output.
2.  Proposed solution should be affordable:
• When is stock affordable?
• When is Saving Account affordable?
Interaction with the expert(s)
Depending on the complex nature of the questions to be answered, we may find out that other things
might be needed:
• Interaction with data bases.
• Algorithmic routines.
• Sub Expert systems.
For KB1:
The expert determined that stocks are affordable if “Discretionary Income” exists.
We have to define “Discretionary Income” in a measurable manner.
From the interaction with the expert, we introduce the concept that in order to have “DI”, the investor
has to have:

Some savings (> $ 3000.).
A luxury item (Boat/ Luxury Car).

n.b.:  1.  Keep careful records of interaction with the expert(s).
          2.  One of the products of these steps are expert(s) verifiable statements about the knowledge

domain.
i.e.,  Stocks are affordable if there is savings and a luxury item.
These will be used for carrying out formal proof procedures.  In a high risks situation (see table 3.1)
these statements should be verified by enough experts to get the required level of confidence (see
chapter 9).
We have preliminary design information that consists of:
1. An expert sub-system to determine affordability.
2. An expert sub-system for risk tolerance.
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3. An expert sub-system which makes an investment category decision using 1 & 2.
n.b.:  This is very useful for designing a well structured system.
Refer to chapter 7, “Knowledge Modeling”, and pick a knowledge model that fits the preliminary
design information.

Figure 3.2.2:  KB1 Design

Implementation

In the implementation step, a software module is translated from its current design language into a
compilable language.  The source code resulting from that translation must be verified, i.e. shown to be
complete, consistent and to satisfy its specifications.

Implementation is the last step in a series of design and translation steps that turn an initial high level
specification for the system as a whole into compilable code.  The stepwise refinement process that
produces the code from the initial specification uses the following refinement operations:

• Design of a module that has been specified but not yet designed.

• Specification of a module that is used in a designed module but has not yet been specified.

• Translation of a module from one design language to another language, usually one that is more
detailed and closer to a compilable language.

At the Implementation stage, the main objective is the creation of a complete executable system,
including software to carry out all processes specified in clear or black boxes, according to constraints
on those parts of the system.  The system is comprised of executable rules, objects, procedures, etc.,
that:

• Satisfy requirements of the system as a whole .
• Are executable functions that are equivalent to abstract functions specified in the design.

For example, the design may specify a function that determines that the user is rich.  The
implementation may check the bank account, kind of car owned, etc.  However, it may not catch
certain rich people because it does not check art owned.  In this case, the implementation fails to carry
out the abstract function required of it.  In general, the computer bases a conclusion on less observed
data than an expert, and simplifies the inference an expert makes to one that is just based on the small
set of data the computer looks at.

The implementation stage should consist of the following steps:

1.  Determine the high level structure of the system to be implemented.

2.  Define communication between subsystems Implementation.

3.  Provide a detailed definition of subsystems.
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4.  Select the implementation tool.

5.  Execute the implementation in the tool.

Constraints on Design and Implementation

The following constraints apply to the operations in the stepwise refinement process:

Specification of a module must include all properties that are used in any existing verifications of other
modules.

• No module can be designed before it is specified.

• Designs must be proved to satisfy their specifications.

• Translations must preserve specified properties of the source module (being translated) in the
destination module (the result of the translation).

Correctness Verification

Design vs. Specification

The overall result of this is a proof that any system that satisfies all the design documents is correct
(i.e., complete, consistent, stable, satisfies requirements imposed by subject) provided that the parts not
yet designed or implemented have properties as required by clear box theorems and the models of
knowledge, or specified by the expert.

Code vs. Design

The equivalence between requirements and implementation must be proven.  Previous results together
with proof of equivalence of design and implementation may be used.  This may take the form of a
cleanroom-type layered correctness proof in which all boxes are clear and implemented, with the top
part constituting the previous proof of the equivalence of requirements and design.

Depending on the complexity of the problem and the consequence of failure, this process is to be
accomplished by the developer(s) (Level I), the developer(s) and two members of the organization
(Level II), or a separate verification team (level III).  Table 3.1 is to be used as a guide in determining
the level of the project.  figure 4.3 shows the process and figure 3.3.1 is the implementation to
knowledge base 1.

Table 3.1:  Level of Effort for the Correctness Verification Stage
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Consequence of Failure

Complexity Loss of
Life

Injury High $$$ Inconvenience Other(lC,...)

Very
Complex

III III III II I

Medium III III II I I

Simple III III II I I

Correct Verifications
Done By:
Level I: Developers
Level II: Developer(s) + 2

Members of
Organization

Level III: Separate V&V
Team

2,...n increment

Correctness:
Equivalence Between

Requirements & Design

CORRECTNESS
VERIFICATION
(Team Reviews)

(pass)

NO

YES

Correctness:
Equivalence Between
Design & Implementation

YES CORRECTNESS
VERIFICATION
(Team Reviews)

(pass)

• First Increment

Rigorous & Formal Design Based
on Structured Programing Theory

• Design Logic
• Software Structure
• Knowledge Representation
• Organization of Structural Data

DESIGN
structural design

Executable Rules; Objects; Procedures

• Determine High Level Structure
• Define Communication
• Define Subsystems
• Select Implementation Tool
• Implement

IMPLEMENTATION

OUTPUT:
Detailed CR Report

Figure 3.3:  Correctness Verification

Step 1 -- Determine the high level structure of the system to be implemented:  From the design
stage, it was determined that the expert system consists of 3 subsystems, discretionary income (DI),
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risk tolerance (RT) and type of investment (INV).  The structure of the system can be expressed by the
function:

Investment = INV( DI( boat, "luxury car", "savings account"),

                  RT( stocks, "lottery tickets"))

This expresses the fact that the output of DI and RT are inputs to INV.

Step 2 -- Define communication between subsystems:  The output of DI and RT must be
sufficiently fine-grained to distinguish cases where different investments are indicated.  Since there are
only 2 investments in this example system, only 2 values are required as output for each of these
subsystems; use high and low for risk tolerance, and yes and no for discretionary income.  At this point,
the inputs, outputs and communication between subsystems have all been defined.

Step 3 -- Detailed definition of subsystems:  In this stage, the expert information collected in the
design step will be converted into precise logical statements; this process will be illustrated on the DI
subsystem.

The condition that must be true to have discretionary income is:

A = (Savings > $3000) (1)

AND  ( "Own Boat" = yes  OR "Own Car" = yes )

The expert information about discretionary income can be formalized as:

A IMPLIES ("discretionary income" = yes) (2)

NOT A IMPLIES ("discretionary income" = yes) (3)

Step 4 -- Selection of implementation tool:  At this point, there is enough information to choose a
tool in which to implement the expert system.  The requirements on the tool are:

• Provide for communication between subsystems.

• Express rules such as (2) and (3).

Most rule-based expert system shells meet these requirements.   Although the order of information in
the knowledge base must be slightly different in forward and backward chaining implementations,
either form of inference engine can be used to implement this knowledge base.

Step 5 -- Implementation in the tool:  The rule-based-shell implementation will be written in two
steps: first as a generic rule-based implementation, finally as an implementation in CLIPS.
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Step 5.1 -- A generic rule-based implementation: Rule-based shells typically allow menu, fill-in and
yes-no questions.  The following questions will gather the necessary information for discretionary
income:

QUESTION TEXT TYPE

What is your savings balance? fill-in

Do you own a boat yes-no

Do you own a luxury car yes-no

The inputs and outputs can be represented inside the expert system by the following variables:

VARIABLE TYPE VALUE

savings numerical >= 0

"Do you own a boat" boolean yes or no

"Do you own a luxury car" boolean yes or no

"discretionary income" enumerated values high or low

Now put the knowledge in statements (2) and (3) into the rule form of rule-based shells.  Rule based
shells encode information in the following form:

• Rules are of the form:

IF <conditions> then <inferences> and <actions>

• <conditions> are built from simple requirements with the logical operations AND, OR and NOT.

• Many of the simple requirements can be written in the forms such as VARIABLE = VALUE, or
more generally:

VARIABLE REL VALUE, where REL is one of the relations

=, >, <, >=. <=

• Inferences can also be written in the form:
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VARIABLE = VALUE, i.e. VARIABLE is set equal to VALUE.

Actions are dependent on particular shells, and will be deferred at this time.

Using the above notation, (2) can be written as:

IF (Savings > $3000) (4)

AND  ( "Do you own a boat" = yes

OR "Do you own a luxury car" = yes )

THEN "Discretionary income" = yes

(3) can be put into rule form as:

If NOT <if part of (4) THEN "Discretionary income" = no (5)

Alternatively and more usually, a rule implementing (3) is written in a form in which the NOT is applied
individually to the simple requirements contained in the "IF" part, rather than to a complicated
expression built up from requirements.  DeMorgan's Laws in mathematical logic:

NOT (A OR B) = NOT A AND NOT B (6)

NOT (A AND B) = NOT A OR NOT B

Using (6) repeatedly transforms (5) to:

IF (NOT Savings > $3000) (7)

OR

( NOT "Do you own a boat" = yes

AND NOT "Do you own a luxury car" = yes )

THEN "Discretionary income" = no

Simplifying the simple conditions using the following relations,

(NOT Savings > $3000) = (Savings <= $3000) (8)

( NOT "Do you own a boat" = yes)

= ("Do you own a boat" = no)

( NOT "Do you own a luxury car" = yes)
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= ("Do you own a luxury car" = no)

Substituting (8) into (7) gives:

IF (Savings <= $3000) (9)

OR  ( "Do you own a boat" = no

AND "Do you own a luxury car" = no )

THEN "Discretionary income" = no

Figure 5.1 shows an expert system in a generic rule-based shell language that implements the
discretionary income, risk tolerance and investment subsystems.  The result is a small knowledge base
(called Knowledge Base 1) that implements the investment expert system.  [Note: Knowledge Base 1
leaves out the savings requirement, to further simplify the example when it is used to illustrate
verification and validation.]

Step 5.2 -- Implementation in CLIPS

Once a generic knowledge base has been written, it must be translated into the language of a particular
shell.  Shown below is an implementation of the generic knowledge base in CLIPS.  The CLIPS is
fairly close to the generic rule-based KB.  The main differences are:

rule syntax: Rules in CLIPS have the following syntax:
(defrule <RULE NAME> <COMMENT>
 <LIST OF CONDITIONS>
 =>
 <LIST OF ACTIONS AND INFERENCES>
)
implementation of the AND operation:  The AND operation can be implemented in two ways:
• A list of the conjuncts in the AND.
• An explicit AND operation.
These alternative ways of writing AND are illustrated by the following two equivalent rules:
(defrule rule1  "stock"
 (risk_tolerance high)
 (discretionary_income TRUE)
 =>
 (assert (investment stocks))
 (printout t "We recommend stocks." crlf)
)
(defrule rule1  "stock"
 (and (risk_tolerance high) (discretionary_income TRUE))
 =>
 (assert (investment stocks))
 (printout t "We recommend stocks." crlf)
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)
implementation of the OR operation:  The OR operation can be implemented by an explicit OR
operation, i.e.,
(defrule rule3c  "high risk tolerance"
 (or  (now_own_stocks TRUE )(lottery_tickets TRUE ))
 =>
 (assert(risk_tolerance high))
)
Equivalently, one can write a separate rule for each disjunct in the OR:
(defrule rule3c1  "high risk tolerance 1"
 (now_own_stocks TRUE )
 =>
 (assert(risk_tolerance high))
)
(defrule rule3c2  "high risk tolerance 2"
 (lottery_tickets TRUE )
 =>
 (assert(risk_tolerance high))
)
 Here is an actual CLIPS implementation.  This implementation is a fairly straightforward translation of
the generic KB1.  More sophisticated implementations of KB1 would structure the knowledge base so
that when sufficient information for a conclusion had occurred, the user would be spared extra
questions.
;
; KB1 in CLIPS,  a demo rule based system
;
;
; Note: In the following knowledge base,
; we will use certain user interface functions
; which can be defined in CLIPS:
;
; yes-or-no-p asks a yes-no question
; ask-parm asks a fill-in question
; ask-parm asks a menu question
;
; To run this CLIPS knowledge base, you need these functions
; which are not shown here.
;
;
; INVESTMENT TYPE SUBSYSTEM
;
;    Rule 1: If "Risk tolerance" = high
;      AND "Discretionary income exists" = yes
;         then investment = stocks.
;
(defrule rule1  "stock"
 (risk_tolerance high)
 (discretionary_income TRUE)
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 =>
 (assert (investment stocks))
 (printout t "We recommend stocks." crlf)
)
;
;    Rule 2: If "Risk tolerance" = low
;      OR "Discretionary income exists" = no
;         then investment = savings account.
;
(defrule rule2a  "savings account 1"
 (risk_tolerance low)
 =>
 (assert (investment "savings account"))
 (printout t "We recommend a savings account." crlf) )

(defrule rule2b  "savings account 2"
 (discretionary_income FALSE)
 =>
 (assert (investment "savings account"))
 (printout t "We recommend a savings account." crlf) )
;
; DISCRETIONARY INCOME SUBSYSTEM
;
;    Rule 5: If
;         ( Savings > $3000)
;         AND ("Do you own a boat" = yes
;           OR "Do you own a luxury car" = yes)
;         then "Discretionary income exists" = yes.
;
; First we will gather the information
;
(defrule rule5a  "boat"
 (not (has_boat ? ))
 =>
 (bind ?boat ( yes-or-no-p "Do you own a boat? " ))
 (assert (has_boat ?boat  ))
)
;
(defrule rule5b  "luxury car"
 (not (has_lux_car ? ))
 =>
 (bind ?lc ( yes-or-no-p "Do you own a luxury car? " ))
 (assert (has_lux_car ?lc  ))
)
;
(defrule rule5c  "savings balance"
 (not (savings_balance ? ))
 =>
 (bind ?sb ( ask-parm "What is your savings balance? " ))
 (assert (savings_balance ?sb))
)
;
; Now we will use the information determining discretionary income
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;
(defrule rule5d  "has discretionary income"
 (savings_balance ?sb)
 (test( > ?sb 3000))
 (or (has_lux_car TRUE  ) (has_boat TRUE))
 =>
 (assert (discretionary_income TRUE))
)
;
;    Rule 6: If Savings <= $3000
;              OR
;              ("Do you own a boat" = no
;                AND "Do you own a luxury car" = no)
;              then "Discretionary income exists" = no.
;
(defrule rule6  "has no discretionary income"
 (savings_balance ?sb)
 (test( <= ?sb 3000))
 (and (has_lux_car FALSE  ) (has_boat FALSE))
 =>
 (assert (discretionary_income FALSE))
)
;
; RISK TOLERANCE SUBSYSTEM
;
;    Rule 3: If "Do you buy lottery tickets" = yes
;      OR "Do you currently own stocks" = yes
;         then "Risk tolerance" = high.
;
(defrule rule3a  "lottery tickets"
 (not (lottery_tickets ? ))
 =>
 (bind ?Lt ( yes-or-no-p "Do you purchase lottery tickets ? "))
 (assert (lottery_tickets ?Lt ))
)
;
(defrule rule3b  "currently own stocks"
 (not (now_own_stocks ? ))
 =>
 (bind ?s ( yes-or-no-p "Do you currently own stocks ? "))
 (assert (now_own_stocks ?s ))
)
;
(defrule rule3c  "high risk tolerance"
 (or  (now_own_stocks TRUE )(lottery_tickets TRUE ))
 =>
 (assert(risk_tolerance high))
)
;
;    Rule 4: If "Do you buy lottery tickets" = no
;      AND "Do you currently own stocks" = no
;         then "Risk tolerance" = low.
;
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(defrule rule4  "low risk tolerance"
 (and (now_own_stocks FALSE)(lottery_tickets FALSE))
 =>
 (assert(risk_tolerance low ))
)

Figure 3.3.1:  KB1 Implementation


